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Abstract
New solvable vertex models can be easily obtained by staggering the spectral
parameter in already known ones. This simple construction reveals some
surprises: for appropriate values of the staggering, highly non-trivial continuum
limits can be obtained. The simplest case of staggering with period 2 (the Z2

case) for the six-vertex model was shown to be related, in one regime of the
spectral parameter, to the critical antiferromagnetic Potts model on the square
lattice, and has a non-compact continuum limit. Here we study the other
regime: in the very anisotropic limit, it can be viewed as a zig–zag spin chain
with spin anisotropy. From the Bethe–Ansatz solution, we obtain the central
charge c = 2, the conformal spectrum and the continuum partition function,
corresponding to one free boson and two Majorana fermions. Finally, moving
in more physical territory, we obtain a massive integrable deformation of the
model on the lattice. Interestingly, its scattering theory is a massive version of
the one for the flow between minimal models. The corresponding field theory
is argued to be a complex version of the C

(2)
2 Toda theory.

PACS numbers: 05.50.+q, 11.25.Hf, 02.10.Ox, 05.30.Pr

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It is a simple consequence of the quantum inverse scattering [1] formalism (going back to
Baxter’s ‘Z invariance’ [2]) that new integrable vertex models can be obtained from basic ones
by allowing for some staggering of the spectral parameters. If the basic Ř-matrix is associated
with a single crossing, one can in this way build ‘block’ Ř-matrices, using p2 crossings, with
p = 2, 3, . . ., and staggering the spectral parameters (see figure 1).
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Figure 1. The Ř-matrices for a basic vertex model (left), and for a staggered vertex model with
p = 2 (right).

While constructing the model and writing down the Bethe–Ansatz equations (BAE) is
straightforward, the physics of the models thus obtained presents interesting subtleties. A
striking example, in relation with the antiferromagnetic Potts model [3], was discussed in
detail in [4, 5]. It was found then that the case n = 2 for the six-vertex model has a non-
compact continuum limit [5] in a certain regime of the spectral parameter (see below for a
more accurate definition), and may be related to the complex sine-Gordon (SG) model. While
major difficulties remain in this case, the other regime of the spectral parameter turns out to
be also of interest, and somewhat more tractable. Its study is the main goal of this paper.

1.1. Vertex models, spin chains and field theories

The correspondence between integrable spin chains with SU(2) or SU(2)q symmetry and
quantum field theories has been investigated in great detail already. In the antiferromagnetic
regime, it is well known that a chain of spin s corresponds to a level-2s Weiss–Zumino–Witten
(WZW) model in the SU(2) case, and to a deformation of this theory in the Cartan direction for
SU(2)q [6]. Cursory examination of the literature would suggest that nothing much remains
to be done in this area.

From the R-matrix point of view, models with higher values of the spin s are obtained
by projecting tensor products of (2s) fundamental representations of Uq(sl2) onto higher spin.
This construction has a close parallel in conformal field theory (CFT), where higher level (2s)
representations of the current algebra are obtained by combining (2s) level one representations.
There are several reasons why it would be interesting to build integrable models which are
not projected onto irreducible Uq(sl2) components. In the case s = 1 for instance, this would
correspond to models of pairs of spin- 1

2 variables. This can be reinterpreted more physically in
terms of ladders, or in terms of electron physics, pairs of wires or channels. The latter case is
of the highest importance. For instance, the two-channel Kondo model [7] or the two-channel
interacting resonant level models [8, 9] are usually solved by going to an even–odd basis,
which effectively amounts to solving the problem in the level k = 2 sector. Many physical
questions are however related to the mixture of the even and odd degrees of freedom—e.g.
because it corresponds to transport of electrons between wires. The search for integrable cases
where this mixture could be studied is a priority.

To have a better idea of what to expect, it is useful to turn to the CFT point of view.
Imagine starting with two SU(2) Kac–Moody algebras at level 1, represented by the currents
j

μ

i , i = 1, 2 and μ = 1, 2, 3. The sums

Jμ = j
μ

1 + j
μ

2 (1.1)
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are well known to provide then a Kac–Moody algebra at level 2. Of course, each level 1
corresponds to the central charge c = 1, while level 2 has the central charge c = 3/2. The
point is that in taking two copies of level 1, an Ising model CFT factors out, according to the
well-known decomposition

SU(2)1 × SU(2)1 = SU2(2) + Ising. (1.2)

This can be illustrated quickly using bosonization. Introduce two chiral bosons φ1, φ2 with
propagators

〈φi(z)φi(w)〉 = − 1

4π
ln(z − w). (1.3)

The two level-1 current algebras are obtained through

j±
i ∝ exp(±i

√
8πφi), j 3

i ∝ ∂φi. (1.4)

It is convenient to introduce now symmetric and antisymmetric combinations of the bosons:

� = 1√
2
(φ1 + φ2), φ = 1√

2
(φ1 − φ2). (1.5)

So we have

J± ∝ cos
√

4πφ exp(±i
√

4π�), J 3 ∝ ∂�. (1.6)

The field cos(
√

4π�) is a Majorana fermion [10]. The field i sin(
√

4πφ) is another one, which
is orthogonal to the currents Jμ, and is discarded in the construction of SU(2)2. Corresponding
to this splitting, the sum H = H1 + H2 of the two one-boson Hamiltonians decomposes as
H = HSU(2)2 + HIsing where HSU(2)2 ∝ ∑

μ : JμJμ :, and Jμ are the currents at level 2.
Quantum deformations of SU(2)2 are obtained by adding to the Hamiltonian HSU(2)2

a Cartan deformation proportional to J 3J 3. We can as well deform the full Hamiltonian,
obtaining in this way a theory made of two Majorana fermions and one boson with anisotropy-
dependent radius. This should be the continuum limit of the models we are after. We will
show in the following that these models are obtained by the general staggering construction,
with n = 2, and an appropriate choice of the spectral parameters.

Interestingly, it can be shown [11] that the staggered models correspond algebraically to
solutions of the Yang–Baxter equations based on ‘bigger’ irreducible representations of the
quantum affine algebra Uq(ŝl2). This occurs ultimately because finite-dimensional irreducible
representations of quantum affine algebras are isomorphic to the products of evaluation
representations, which are themselves ‘decorations’ (with the spectral parameter) of the usual
spin-s representations of Uq(sl2) [12].

1.2. Massive deformation

Another important application of the staggered model is that it can be used to produce a
lattice discretization of a massive QFT. This is done, following [13], by introducing into
the staggered model an additional (purely imaginary) staggering of the spectral parameters.
Using this approach, we obtain a scattering theory involving two types of massive particles,
where the scattering between particles of the same type (resp. different types) is given by the
sine-Gordon S-matrix (resp. the sine-Gordon S-matrix with an imaginary shift in the rapidity).
It turns out that such a scattering theory (but with massless particles) arose before [14] in the
context of minimal models of CFT perturbed by the �13 operator. Consider the action

A = Amin + λ

∫
d2x �13(x), (1.7)

3
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where Amin is the action of a minimal model of CFT. The problem of finding the thermodynamic
Bethe–Ansatz (TBA) equations for the renormalization-group flow of theory (1.7) was first
studied by Zamolodchikov in [15, 16]. The results depend crucially on the sign of the coupling
λ. For λ < 0, model (1.7) becomes massive. It was shown in [15] that the corresponding
S-matrix is the simple RSOS S-matrix and that the TBA diagram is of the An type, with a
massive particle at one end of the diagram. For λ > 0, model (1.7) describes the massless flow
between two consecutive minimal models. In [16], a TBA diagram was proposed, without
resorting to an S-matrix: this diagram is also of the An type, but with mass terms e±θ at the
two ends of the diagram. It was found later, in [14], that the corresponding scattering theory
consists of massless left/right particles, interacting through the SG and shifted-SG S-matrices.

In summary, we construct here a non-critical lattice model whose continuum excitations
are described by a massive version of the S-matrix for the flow between minimal models of
CFT. We also propose an effective QFT for this model, with one boson and two Majorana
fermions which interact with each other.

We note that the results of this section are somewhat less complete and rigorous than
those of the other sections. On the other hand, they form a nice continuation, and provide
potential physical applications of our model. We note that the S-matrix we obtain is a new
object, which bears intriguing potential relationship with as yet unsolved models, such as the
Lund Regge field theory.

1.3. Outline

In section 2, we expose in more detail the construction of the model and its various lattice
formulations, as well as the relation with spin chains. In section 3, we present the Bethe–
Ansatz solution, and obtain the critical exponents, through the study of low-energy excitations.
In section 4, we discuss the associated CFT, and exhibit the full operator content through the
study of torus partition functions. Finally, in section 5, we study the integrable massive
deformation, and derive its scattering theory, TBA equations and ground-state energy scaling
function. This allows us to propose an interacting effective QFT. Some important but quite
long calculations are done in the appendices.

2. Solvable models based on the Temperley–Lieb algebra

In this section, we explain the construction of the Z2 staggered model from the Temperley–
Lieb algebra. It appears as a solution of the star-triangle equations for the Potts model in
the antiferromagnetic regime [3, 17]. We recall the relation of the TL algebra to Potts and
RSOS models, and give some comments on the anyonic fusion interpretation of RSOS models.
Finally, we present the quantum-chain Hamiltonian related to the Z2 staggered model.

2.1. Temperley–Lieb algebra and Yang–Baxter equations

We consider a square lattice of width 2N sites. Let us recall the algebraic relations defining the
Temperley–Lieb (TL) algebra [18] with generators ej (j = 1, . . . , 2N − 1) and loop weight n:

e2
j = n ej

ej ej±1ej = ej

ej ej ′ = ej ′ej if |j − j ′| > 1.

(2.1)

In this paper, we are interested in the regime 0 � n � 2, so we set the notation:

n = q + q−1, q = eiγ , 0 � γ � π

2
. (2.2)

4
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Figure 2. The Yang–Baxter equations (2.5).

J1

J2

Figure 3. The Potts model on the square lattice with anisotropic couplings J1, J2. The dots
represent Potts spins Sj.

Using the TL algebra, one constructs the central object of lattice integrability, which is the
Ř-matrix acting between sites j and j + 1:

Řj,j+1(u) ≡ sin(γ − u) 1 + sin u ej . (2.3)

This is depicted as

+ sinuu = sin(γ − u)

.

(2.4)

The Ř-matrix then satisfies the Yang–Baxter equations (see figure 2) [19]:

Řj,j+1(u)Řj+1,j+2(u − v)Řj,j+1(v)

= Řj+1,j+2(v)Řj,j+1(u − v)Řj+1,j+2(u). (2.5)

The inhomogeneous partition function on a square lattice is obtained by placing a plaquette
(2.4) at coordinates (x, y), with parameter u = uy−vx , where the uy (resp. vx) are the horizontal
(resp. vertical) spectral parameters on the lattice.

2.2. Relation to the Potts model

The Q-state Potts model [20] is a model of classical spins with nearest-neighbour interactions.
Each spin Sj can take Q values, and sits on a vertex of the square lattice. The partition function
is given by

ZPotts =
∑

{Sj =1,...,Q}

∏
i
�

j

exp(J1δSi ,Sj
)
∏
i
�

j

exp(J2δSi ,Sj
), (2.6)

where each product runs on edges with the corresponding orientation, J1 and J2 are the
couplings and δ is the Kronecker symbol (see figure 3).

5
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Since the work of Baxter [3, 19], it has been known that the Potts model is equivalent to
an integrable TL loop model (with loop weight n = √

Q) in two cases, described in terms of
the parameters xr = (eJr − 1)/

√
Q.

• The self-dual line x1x2 = 1. It is equivalent to a TL model with a homogeneous spectral
parameter u, given by x1 = sin u/ sin(γ − u). In the regime x1, x2 > 0, it describes the
paramagnetic/ferromagnetic transition of the Potts model. In the regime x1, x2 < 0, it
describes the Berker–Kadanoff critical phase.

• The ‘staggered critical line’ (2 + x1
√

Q)(2 + x2
√

Q) = 4 − Q. It is equivalent to
a TL model with staggered spectral parameters {vx} = {0, π

2 , 0, π
2 , · · ·} and {uy} =

{u, u + π
2 , u, u + π

2 , · · ·} [3]. There are again two regimes. If γ < u < π/2, then both
couplings are antiferromagnetic (x1, x2 < 0) and the staggered critical line describes
the paramagnetic/antiferromagnetic transition [3–5]. In the other regime, 0 < u < γ ,
the couplings are such that x1x2 < 0: the corresponding Potts model is thus ‘totally
anisotropic’. The purpose of this paper is to study the continuum limit of this last regime,
through the Bethe–Ansatz.

2.3. RSOS models at roots of unity, anyonic fusion

We have seen above that the TL algebra can be realized by Potts spins for the special values
of the loop weight n = √

Q, where Q is a positive integer. In this paragraph, we recall the
results of [21] on the RSOS models, related to TL with loop weight

n = 2 cos
π

m + 1
,

where m ∈ {3, 4, . . .}. The TL algebraic relations (2.1) can be realized on a vector space with
each basis vector labelled by height variables |h1 . . . h2N 〉, subject to the local constraints:

hj ∈ {1, . . . , m}, |hj − hj+1| = 1. (2.7)

The TL generators are given by their action on this basis:

ej |h1 . . . h2N 〉 = δhj−1hj+1

∑
|h′−hj+1|=1

√
Shj

Sh′

Shj+1

|h1 . . . h′ . . . h2N 〉, (2.8)

where Sh ≡ sin πh
m+1 .

In a recent paper [22], it was noted that the RSOS representation (2.7)–(2.8) of the TL
algebra could be re-interpreted in terms of anyons for the Zk-parafermionic trial wavefunctions
of Read–Rezayi [23]. This is due to the equivalence between the fusion rules of primary
operators in the Zk-parafermionic CFT [24] and those of Uq(sl2), for q = e

iπ
k+2 . In [22] a

‘topological symmetry’ Y was introduced which is present in any Hamiltonian generated by
the ej (2.8). We identify this symmetry as the total Uq(sl2) spin, which corresponds to the
definition of Y in terms of F-matrices in [22], and is known to commute with the TL algebra
(for n = q + q−1), even for generic values of q.

2.4. Staggered model

Returning to the generic construction of section 2.1, we choose a staggering of period p = 2
for both sets of spectral parameters (see figure 4). This amounts to building a homogeneous
partition function with the block Ř-matrix:

Řj,j+1(u) = Ř2j+1

(
u − π

2

)
Ř2j (u)Ř2j+2(u)Ř2j+1

(
u +

π

2

)
, (2.9)

6
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0 0π/2

Figure 4. Spectral parameters for the staggered Z2 model. The thick lines represent the Ř-matrix.

where j = 1, . . . , N . Using definition (2.3) of Řj (u) and the algebraic relations (2.1), we get

Řj,j+1(u) = − 1
4 sin2(2γ − 2u) 1

− 1
2 sin u sin(2γ − 2u)[cos(γ − u)(e2j−1 + e2j+1) + 2 cos γ cos u e2j ]

+ 1
4 sin 2u sin(2γ − 2u) (e2j−1e2j + e2j e2j−1 + e2j e2j+1 + e2j+1e2j )

+ sin2 u cos u [cos(γ − u) (e2j−1e2j+1e2j + e2j e2j−1e2j+1)

− cos u e2j e2j−1e2j+1e2j ]. (2.10)

The particular choice of the shift π
2 in the spectral parameters ensures an additional Z/2Z

symmetry: from the YBE, one can show that the two-row transfer matrix commutes with the
Z2 charge C defined as

C ≡
N∏

j=1

Ř2j−1,2j

(
π
2

)
cos γ

, C2 = 1. (2.11)

2.5. Relation to quantum chains in the very anisotropic limit

An interesting aspect of Yang–Baxter integrable statistical models is that the transfer matrix
generally possesses a very anisotropic limit, where its derivatives with respect to u are local,
one-dimensional Hamiltonians. Expression (2.10) implies that Řj,j+1(0) = − 1

4 sin2 2γ 1, and
so the two-row transfer matrix T (u) reduces to a cyclic translation of two sites to the right in
the limit u → 0. The first-order Hamiltonian is

H ≡ −1

2
sin 2γ

d log T (u)

du

∣∣∣∣
u=0

= −1

2
sin 2γ

N∑
j=1

Řj,j+1(0)−1 dŘj,j+1

du
(0). (2.12)

The expression of H in terms of TL generators is

H = 2N cos 2γ 1 +
2N∑
j=1

(−2 cos γ ej + ej ej+1 + ej+1ej ). (2.13)

7
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J1

J2

Figure 5. Zig–zag spin chain with J1 and J2 interactions.

This is an integrable point for the quadratic TL Hamiltonian studied in [25]:

Hqu(K1,K2) = K1

2N∑
j=1

ej + K2

2N∑
j=1

(ej ej+1 + ej+1ej ) (2.14)

H = 2N cos 2γ 1 + Hqu(−2 cos γ, 1). (2.15)

Note that, besides H, Hqu(K1,K2) contains another remarkable point Hq−MG =
Hqu(− cos γ, 1) [26], which is a q-deformation of the Majumdar–Ghosh chain [27, 28]. Like
the isotropic (q = 1) Majumdar–Ghosh chain, Hq−MG exhibits spontaneous dimerization and
a finite energy gap for q close enough to 1 [25].

For a generic value of the loop weight n, the algebraic relations (2.1) are realized by a
spin- 1

2 chain with Uq(sl2) symmetry, where n = q + q−1. If we denote σ1, . . . , σ2N the Pauli
matrices on the chain, then the projector of spins σj , σj+1 onto the Uq(sl2) singlet reads, up to
a multiplicative constant,

ej = −(σ +
j σ−

j+1 + σ−
j σ +

j+1

)
+ 1

2

(
1 − σ z

j σ z
j+1

)
eiγ σ z

j+1 , (2.16)

and the above operators satisfy the TL algebraic relations. Using this representation, the first
summand in (2.14) would simply give the XXZ spin chain. The quadratic terms in ej , ej+1

lead to a different spin model

Hqu(K1,K2) =
2N∑
j=1

{
J2

2
σj · σj+2 + J

xy

1

(
σ +

j σ−
j+1 + σ−

j σ +
j+1

)
+ J z

1 σ z
j σ z

j+1 + iJ3
(
σ z

j−1 − σ z
j+2

)(
σ +

j σ−
j+1 + σ−

j σ +
j+1

)}
, (2.17)

where

J
xy

1 = −(K1 + 2 cos γK2), J z
1 = − (

1
2 cos γK1 + K2

)
,

J2 = K2, J3 = K2 sin γ.

The J2 term in equation (2.17) represents two XXX spin chains, living on the even and odd
sites respectively. The J1 terms correspond to an XXZ interaction with a ‘zig–zag’ shape (see
figure 5). The J3 term is an anti-Hermitian three-spin interaction, with no obvious physical
interpretation.

For clarity, we give the explicit expression of our integrable Hamiltonian H:

H =
2N∑
j=1

{
1

2
σj · σj+2 − sin2 γ σ z

j σ z
j+1

+ i sin γ
(
σ z

j−1 − σ z
j+2

)(
σ +

j σ−
j+1 + σ−

j σ +
j+1

)}
. (2.18)

To end this section, let us discuss the consequences of a naive bosonization [29] argument
for this model. We can discard the irrelevant i sin γ term, and we end up with two free

8
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bosons φ1, φ2 with compactification radii R1 = R2 = R independent from γ , coupled by the
quadratic term ∂φ1∂φ2. Since this term is symmetric in the exchange of the bosons (φ1 ↔ φ2),
the symmetric and antisymmetric combinations � = (φ1 + φ2)/

√
2, φ = (φ1 − φ2)/

√
2 are

decoupled free bosons, with compactification radii R± = R ± δR, where δR depends on γ .
Thus, we obtain two decoupled free bosons �,φ with both radii depending on γ . However,
using the Bethe–Ansatz exact solution of the staggered model (see section 3), we find that the
continuum limit consists of two free bosons with one radius depending on γ , and the other
radius independent of γ . It seems then that the bosonization approach misses an important
effect due to the anti-Hermitian term in H.

3. Bethe–Ansatz solution

In this section, we present the solution by Bethe–Ansatz of the model presented in section 2.4.
We find that the Bethe roots form two coupled Fermi seas, and the elementary excitations are
holes close to the Fermi levels. In the continuum limit, we obtain the dressed momentum and
energy (3.22) of the holes, and the dressed scattering amplitudes (3.27) between them. The
central charge of the theory is c = 2. Using the Wiener–Hopf technique for the computation
of finite-size corrections (see appendix B), we derive the conformal spectrum (3.31). It has
the form of a two-component Coulomb gas.

3.1. Transfer matrix of the vertex model

To find the eigenvalues of the Hamiltonian H (2.13), we use the six-vertex formulation of the TL
algebra, which is defined by Ř-matrix (2.3) and expression (2.16) of the TL generators as 4×4
matrices. To construct the transfer matrix, we introduce the R-matrix Rj,j ′(u) ≡ Pj,j ′Řj,j ′(u),
where Pj,j ′ is the permutation operator between the sites j and j ′. The one-row transfer matrix
t (u) with twisted boundary conditions is then given by

t (u) = Tr0

[
eiφσz

0 R01(u)R02

(
u − π

2

)
. . . R0,2N−1(u)R0,2N

(
u − π

2

)]
.

The two-row transfer matrix is given by T (u) = t (u)t
(
u + π

2

)
.

3.2. Bethe–Ansatz equations

Throughout this paper we consider only periodic (twisted) conditions, and hence the total
magnetization is always conserved. As a consequence, we can use the algebraic Bethe–
Ansatz [1], with the reference state |0〉 = | ↑ . . . ↑〉. Defining the shifted Bethe roots as
αj ≡ i(γ − 2uj ), the BAE and the eigenvalues and eigenvectors of the transfer matrix t (u) in
the r-particle sector are[

sinh(αj − iγ )

sinh(αj + iγ )

]N

= −e2iφ
r∏

l=1

sinh 1
2 (αj − αl − 2iγ )

sinh 1
2 (αj − αl + 2iγ )

, (3.1)

�(u) = 1

2N

{
eiφ[sin 2(γ − u)]N

r∏
j=1

sinh 1
2 [iγ + (αj + 2iu)]

sinh 1
2 [iγ − (αj + 2iu)]

+ e−iφ(− sin 2u)N
r∏

j=1

sinh 1
2 [iγ − (αj + 2iu − 2iγ )]

sinh 1
2 [iγ + (αj + 2iu − 2iγ )]

}
, (3.2)

|(u1, . . . , ur)〉 = B(u1) . . . B(ur)|0〉. (3.3)

9



J. Phys. A: Math. Theor. 43 (2010) 225201 Y Ikhlef et al

In equation (3.3), we have used the notations of [1] for the monodromy matrix elements. The
Bethe states |(u1, . . . , ur)〉 are invariant under the two-site cyclic translation e−2iP . In the
very anisotropic limit u → 0, the transfer matrix becomes

t (0) t
(π

2

)
=
(

− sin2 2γ

4

)N

e−2iP , (3.4)

and the corresponding eigenvalue is, from (3.2),

�(0) �
(π

2

)
= e2iφ

(
− sin2 2γ

4

)N r∏
j=1

sinh(αj + iγ )

sinh(αj − iγ )
. (3.5)

The energy for the Hamiltonian (2.13) is the logarithmic derivative of the eigenvalue:

E ≡ −1

2
sin 2γ

d log[�(u)�(u + π/2)]

du

∣∣∣∣
u=0

= 2N cos 2γ −
r∑

j=1

2 sin2 2γ

cosh 2αj − cos 2γ
. (3.6)

Equations (3.5) and (3.6) show that each Bethe root α contributes to the total momentum and
energy by

2kj = −i log
sinh(αj − iγ )

sinh(αj + iγ )
, εj = − 2 sin2 2γ

cosh 2αj − cos 2γ
. (3.7)

Because of the periodicity property of the Boltzmann weights Ř(u + π) = −Ř(u), the
Bethe states are unchanged under α → α + 2iπ for any of the Bethe roots. So we can restrict
our study to the strip 0 � Im α < 2π . The root α gives a negative contribution to the energy
(3.6) if it is of the form

α
(0)
j = λ

(0)
j or α

(1)
j = λ

(1)
j + iπ, (3.8)

with λ
(a)
j real. So, at low energies, the system is described by two coupled Fermi seas

{λ(0)
j }, {λ(1)

j }. The BAE for the λ
(a)
j are

2Nk
(
λ

(a)
j

) = 2πI
(a)
j + 2φ −

∑
b=0,1

r(b)∑
l=1

�(a−b)
(
λ

(a)
j − λ

(b)
l

)
, (3.9)

where r(a) is the number of roots α(a). The momentum, energy and scattering phases are given
by

2k(λ) = −i log
sinh(iγ − λ)

sinh(iγ + λ)
,

ε(λ) = − sin 2γ × 2k′(λ) = − 2 sin2 2γ

cosh 2λ − cos 2γ
,

�(0)(λ) = −i log
sinh(iγ + λ

2 )

sinh(iγ − λ
2 )

,

�(±1)(λ) = −i log
cosh(iγ + λ

2 )

cosh(iγ − λ
2 )

.

(3.10)

10
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The Bethe integers satisfy I
(a)
j ∈ 1

2 (N + r(a) − 1) + Z. The total momentum and energy are

2Q = 2π

N

∑
a=0,1

r(a)∑
j=0

(
I

(a)
j +

φ

π

)
+ π(r(0) + r(1)), (3.11)

E = 2N cos 2γ +
∑
a=0,1

r(a)∑
j=1

ε(λ
(a)
j ). (3.12)

A special case is when the Bethe roots {λ(0)
j }, {λ(1)

j } are identical on the two lines: we call
these symmetric states. It is a remarkable fact that this subset of the spectrum is given exactly
by the Bethe states of the XXZ spin chain on a periodic lattice with N sites:

HXXZ = −1

2

N∑
m=1

[
σx

mσ x
m+1 + σy

mσ
y

m+1 + �0 σ z
mσ z

m+1

]
, (3.13)

with �0 = − cos 2γ . Indeed, we have the identities

2̃k = kXXZ, ε = εXXZ, �(0) + �(±1) = �XXZ, (3.14)

where quantities with the subscript ‘XXZ’ are related to the Bethe–Ansatz for XXZ. Thus,
BAE (3.9) for symmetric states is equivalent to the XXZ ones, and the energies are related by
E = 2EXXZ .

Finally, we note that the generic BAE (3.1) are identical to those of an XXZ spin chain
on a lattice with N sites, with anti-periodic boundary conditions [31]. This equivalence is
obtained by substituting vj → 2αj +iπ and λ → 2iγ into equation (1.9) of [31], and choosing
an appropriate twist. However, the major distinction between the two models is that the XXZ
chain with anti-periodic boundary conditions does not enjoy total magnetization conservation,
and thus the number of Bethe roots for this problem is fixed to r = N .

3.3. Continuum limit

The ground state corresponds to r(0) = r(1) = N/2, with the Bethe integer distribution (see
figure 6(a)):

{I (0)
j } = − r(0) − 1

2
, . . . ,

r(0) − 1

2

{I (1)
j } = − r(1) − 1

2
, . . . ,

r(1) − 1

2
.

(3.15)

The continuum limit is defined as

N → ∞, r(a)/N → 1/2. (3.16)

In this limit, we assume that the spacing between Bethe roots scales like 1/N , and we describe
the Bethe root distribution by the densities:

ρ(a)
(
λ

(a)
j

) = 1

N
(
λ

(a)
j+1 − λ

(a)
j

) .
We denote [−C(a), B(a)] the interval spanned by the roots λ

(a)
j . BAE (3.9) become Lieb

equations for the root densities:

2k′(λ) = 2πρ(a)(λ) −
∑
b=0,1

∫ B(b)

−C(b)

dμ ρ(b)(μ) K(a−b)(λ − μ), (3.17)

11
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(a)

I
(1)
j :

I
(0)
j :

−2 −1 0 1 2 3−3

(c)

−3 −2 −1 0 1 2 3

(b)

I
(1)
j :

I
(0)
j :

−3 −2 −1 0 1 2 3

I
(1)
j :

I
(0)
j :

Figure 6. Example of Bethe integer distributions for N = 12: (a) ground state; (b) magnetic
excitation m(0) = 2; (c) combined magnetic–electric excitation m(0) = 2, e(0) = 1.

where the kernels are given by K(a) = (�(a))′. In the ground state, we have C(0,1), B(0,1) → ∞,
so equation (3.17) can be solved by the Fourier transform. The solution involves the symmetric
and antisymmetric inverse kernels J (±) (see appendix A):

1 + Ĵ (±)(ω) ≡ 2π

2π − [K̂(0)(ω) ± K̂(1)(ω)]
. (3.18)

The ground-state densities are ρ(0) = ρ(1) = ρ∞, where

ρ∞ = (δ + J (+)) � (2k′)/(2π) = 1

4γ cos[πλ/(2γ )]
. (3.19)

The symbol � denotes convolution.
An elementary excitation above the ground state consists in a hole λh in the distribution

{λ(0)
j } or {λ(1)

j }, interacting with all the particles in both Fermi seas. Let A be a physical
quantity defined as

A = 1

N

∑
a=0,1

r(a)∑
j=1

α(λ
(a)
j )

A →
∫ B(0)

−C(0)

dλ ρ(0)(λ)α(λ) +
∫ B(1)

−C(1)

dλ ρ(1)(λ)α(λ). (3.20)

In the presence of a hole λh, the variation of A with respect to the ground-state value A0 is
given by the dressed quantity αd (see appendix A):

A − A0 = 1

N
αd(λh), αd ≡ −(δ + J (+)) � α. (3.21)

12
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The momentum and energy of a hole are thus

2kd(λ) = −2Atan
[
tanh

(
πλ
4γ

)]
,

εd(λ) = π sin 2γ

2γ cosh[πλ/(2γ )]
.

(3.22)

In the region λ → ∞, the dressed momentum is close to the value −π/2, and the dispersion
relation is linear, with Fermi velocity v:

εd  −v
(

2kd +
π

2

)
, v = π sin 2γ

2γ
. (3.23)

Hence, hole excitations are gapless, and the theory is critical.

3.4. Dressed scattering amplitudes

In the presence of holes, the root densities ρ(a) coexist with the densities of holes ρ
(a)
h . Lieb

equations (3.17) become⎧⎨⎩2π
(
ρ(0) + ρ

(0)
h

) = 2k′ + K(0) � ρ(0) + K(−1) � ρ(1)

2π
(
ρ(1) + ρ

(1)
h

) = 2k′ + K(1) � ρ(0) + K(0) � ρ(1).
(3.24)

These coupled equations can be rewritten in terms of ρ(a) + ρ
(a)
h and ρ

(a)
h :⎧⎨⎩ρ(0) + ρ

(0)
h = ρ∞ − J (0) � ρ

(0)
h − J (−1) � ρ

(1)
h

ρ(1) + ρ
(1)
h = ρ∞ − J (1) � ρ

(0)
h − J (0) � ρ

(1)
h ,

(3.25)

where the kernels J (0), J (±1) are defined as

J (0) ≡ 1
2 (J (+) + J (−)), J (±1) ≡ 1

2 (J (+) − J (−)). (3.26)

The Fourier transforms of the kernels J (0), J (±1) are

Ĵ (0)(ω) = sinh(π − 3γ )ω

2 cosh γω sinh(π − 2γ )ω
,

Ĵ (±1)(ω) = − sinh γω

2 cosh γω sinh(π − 2γ )ω
.

(3.27)

3.5. Central charge and conformal dimensions

The low-energy spectrum consists of ‘electromagnetic’ excitations above the ground-state
distribution, similar to the XXZ case [30]. In the present case, the Bethe integer distributions
{I (0)

j }, {I (1)
j } can be chosen independently, as depicted in figures 6(b) and (c). A magnetic

excitation consists in removing m(0) (resp. m(1)) roots of type α
(0)
j (resp. α

(1)
j ) from the ground

state, while keeping the Bethe integer distributions {I (0,1)
j } symmetric around zero. An electric

excitation consists in shifting all integers I
(0)
j (resp. I

(1)
j ) by e(0) (resp. e(1)).

13
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The central charge and critical exponents are obtained from finite-size corrections to the
total energy and momentum:

E0  Ne∞ − v × πc

6N
, (3.28)

E − E0  v × 2π(� + �̄)

N
, (3.29)

Q = 2π(� − �̄)

N
, (3.30)

where E0 is the ground-state energy.
We start by discussing the untwisted case φ = 0. The ground state is a symmetric state, and

thus the ground-state energy is twice that of the XXZ spin chain (3.13). The latter has a Fermi
velocity v and central charge 1. Using equation (3.28), the central charge of the staggered
model is then c = 2. The finite-size corrections to the energies for the electromagnetic
excitations are computed from the Bethe–Ansatz solution in appendix B. They yield the
conformal dimensions

�em,̃em̃ = 1

8

(
e√
2g

+ m
√

2g

)2

+
1

8
( ẽ + m̃)2,

�̄em,̃em̃ = 1

8

(
e√
2g

− m
√

2g

)2

+
1

8
( ẽ − m̃)2,

g = π − 2γ

2π
, 0 < g <

1

2
,

(3.31)

where
e = e(0) + e(1), m = m(0) + m(1),

ẽ = e(0) − e(1), m̃ = m(0) − m(1).
(3.32)

When the twist φ is not zero, the above exponents are still correct, with the change
e → e + 2φ/π . In particular, the staggered Potts model corresponds to a twist φ = γ = πe0.
The ground state has an electric charge e = 2e0, with exponents � = �̄ = e2

0/(4g), so the
effective central charge is

ctw = 2 − 6e2
0

g
, e0 = γ

π
= 1

2
− g. (3.33)

3.6. Application to the calculation of critical exponents

In the loop formulation, we obtain the k-leg dimensions as follows. For any system size N,
the number of legs k must be even, and the conformal dimensions are defined with respect to
the twisted ground state:

hk = h̄k = �k − e2
0

4g
. (3.34)

The k-leg dimension �k corresponds to a magnetic defect m = k/2, with a minimal value for
m̃ and electric charges e = ẽ = 0 (no background charge). There are then two distinct cases:

hk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
gk2

16
− e2

0

4g
if k ≡ 0 [4]

gk2

16
+

1

8
− e2

0

4g
if k ≡ 2 [4].

(3.35)

14
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Δ3(φ)
Δ2(φ)
Δ1(φ)

φ
0 π/4 π/2 3π/4 π

0.5

0.4

0.3

0.2

0.1

0

Figure 7. Lowest conformal dimensions in the twisted sector, for g = 1/4.

Similarly, the magnetic exponent of the staggered Potts model is defined with respect to the
twisted ground state:

hH = h̄H = �H − e2
0

4g
. (3.36)

The magnetic dimension �H corresponds to a twist φ = π/2, which forbids any non-
contractible loop around the cylinder. Before we obtain �H , we need to discuss the conformal
dimension for the sector m = m̃ = 0 with a general twist φ. In the regime 0 < φ < π , the
lowest dimensions are

�1(φ) = �(φ/π,0),(0,0) = (φ/π)2

4g
, (3.37)

�2(φ) = �(φ/π−1,0),(1,0) = (φ/π − 1/2)2

4g
+

1

8
, (3.38)

�3(φ) = �(φ/π−2,0),(0,0) = (1 − φ/π)2

4g
. (3.39)

The lowest dimension is respectively �1,�2,�3 on the intervals [0, φ0], [φ0, 1 − φ0], [1 −
φ0, π ], where φ0 = π(1 + 2g)/4. See figure 7. In particular, for φ = π/2, we get
�H = �2(π/2) = 1/8, and thus

hH = 1

8
− e2

0

4g
. (3.40)

3.7. Numerical checks

First, we check numerically the assumption that the Bethe integers for the ground-state and
symmetric magnetic excitations are given by (3.15), even in the presence of a twist: see
tables 1 and 2.

We also have verified the above expressions for the effective central charge ctw and the
k-leg exponents hk by numerical diagonalization of the transfer matrix for the loop model at
the pseudo-isotropic point u = γ

2 .
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Table 1. Numerical estimates for the effective central charge in the presence of a twist φ. For each value of γ , we give estimates from the numerical diagonalization of H and the
numerical solution of the BAE with N = 8, 10. These are compared with the exact value c(φ) = 2 − 6(φ/π)2/g.

γ = 0.3 γ = 0.6 γ = 0.9

φ Diagonalization BAE Exact Diagonalization BAE Exact Diagonalization BAE Exact

0 2.0897 2.0897 2 2.0706 2.0706 2 2.0524 2.0524 2
π/12 1.9785 1.9785 1.8970 1.9297 1.9297 1.8652 1.8488 1.8488 1.8049
π/6 1.6462 1.6462 1.5880 1.5079 1.5079 1.4606 1.2395 1.2395 1.2194
π/4 1.0964 1.0964 1.0729 0.8086 0.8086 0.7865 0.2287 0.2287 0.2437
π/3 0.3357 0.3357 0.3519 −0.1629 −0.1629 −0.1574 −1.1761 −1.1761 −1.1223
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Table 2. Numerical estimates for the conformal dimension of the sector Sz = 2, in the presence of a twist φ. For each value of γ , we give estimates from the numerical diagonalization
of H and the numerical solution of the BAE with N = 10. These are compared with the exact value X = 2g.

γ = 0.3 γ = 0.6 γ = 0.9

φ Diagonalization BAE Exact Diagonalization BAE exact Diagonalization BAE Exact

0 0.7857 0.7857 0.8090 0.6200 0.6200 0.6180 0.4316 0.4316 0.4270
π/12 0.7855 0.7855 0.8090 0.6195 0.6195 0.6180 0.4308 0.4308 0.4270
π/6 0.7850 0.7850 0.8090 0.6179 0.6179 0.6180 0.4284 0.4284 0.4270
π/4 0.7842 0.7842 0.8090 0.6153 0.6153 0.6180 0.4244 0.4244 0.4270
π/3 0.7833 0.7833 0.8090 0.6117 0.6117 0.6180 0.4189 0.4189 0.4270
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N=4,6,8
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Exact

Figure 8. Numerical estimates of the effective central charge ctw, as compared with the exact
expression (3.33).

3 4 5 6 7 8
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

X
=

2h

N=4,6
N=6,8
N=8,10
N=10,12
Exact

3 4 5 6 7 8
t

1

1.5

2

2.5

3

X
=

2h

N=4,6
N=6,8
N=8,10
N=10,12
Exact

Figure 9. Numerical estimates of the k-leg exponents X = 2hk with k = 2, 4, 6, 8, as compared
with the exact expression (3.35).

As usual, the critical exponents can be extracted from the finite-size corrections in N to the
dominant eigenvalues in the various sectors labelled by k. We consider the geometry of a strip
of width 2N strands with periodic boundary conditions in the transverse direction. Estimates
for ctw (resp. hk) are then obtained from fits involving three (resp. two) different sizes N. We
use even N throughout. Odd N introduces a twist that leads to different effective exponents
that we do not consider any further.

It is convenient to parameterize γ = π
t

through a new parameter t. The results for ctw

with N � 14 are shown in figure 8. The agreement with (3.33) is excellent. Results for
Xk = 2hk with N � 12 are given in figure 9 for k = 2, 4, 6, 8. The agreement with (3.35) is
very satisfactory, especially when k ≡ 0 [4].

4. Toroidal partition functions

In this section, we use the results from section 3 to construct explicitly the continuum partition
function Z of the statistical model on a torus. Assuming that the conformal spectrum (3.31)
obtained from the analysis of the BAE is complete, we sum the conformal characters over
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all possible conformal dimensions to obtain Z. The resulting expression (4.14) for Z shows
that the continuum limit of the model consists of one boson and two Majorana fermions,
which decouple in the bulk and couple only through boundary conditions. We discuss only
the untwisted case here, leaving the twisted and Potts model cases (including the study of
particular values of Q) to appendix D.

We denote by τ the modular ratio of the torus, and we write q = e2iπτ . Other notations are
defined in appendix C. The primary states of the corresponding CFT have conformal weights
�em,̃em̃ and �̄em,̃em̃ given by the Bethe–Ansatz results (3.31), where the charges satisfy the
parity conditions

e + ẽ ∈ 2Z, m + m̃ ∈ 2Z. (4.1)

The partition function on the torus is given by the sum of the generic conformal characters
χ�, χ̄�̄:

Z(g) = Tr
(
qL0−c/24 q̄L̄0−c/24

) =
∑
�,�̄

χ�(q) χ̄�̄(q̄), (4.2)

where the sum is over all possible primary states, and χ� is the trace of qL0−c/24 over the
descendants of the primary state ��:

χ�(q) = Tr� qL0−c/24. (4.3)

The character χ� can be inferred from the possible Bethe integer distributions. Starting from an
electromagnetic excitation with dimension �, we can create vacancies, by shifting the largest
Bethe integer Ij → Ij + n, n � 0. This vacancy state has dimension � + n. These vacancies
can be combined, and the state with shifts (n1, . . . , nk) has dimension � + n1 + . . . + nk .
Furthermore, vacancies can be introduced independently on the two lines I

(0)
j , I

(1)
j . Let us

denote by p(n) the number of partitions of the integer n. We have

χ�(q) =
∑

n(0),n(1)�0

p(n(0))p(n(1))q�+n(0)+n(1)−c/24

= q�+(2−c)/24

η(τ)2
, (4.4)

where η(τ) is the Dedekind function (C.3). Using (4.4) with c = 2 and the parity conditions
(4.1), we obtain

Z(g) = 1

|η(τ)|4
∑

m≡m̃[2]
e≡̃e[2]

q�em,̃em̃ q̄�̄em,̃em̃ . (4.5)

Using the Poisson summation (C.5), this can be written as

Z(g) = 2

(
A

∑
m,m′ even

+ B
∑

m even,m′ odd

+ C
∑

m odd,m′ even

+ D
∑

m,m′ odd

)
Zm,m′(g), (4.6)
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where

A =
∑

m,m′ even

Zm,m′(1/2), B =
∑

m even
m′ odd

Zm,m′(1/2),

C =
∑
m odd
m′ even

Zm,m′(1/2), D =
∑

m,m′ odd

Zm,m′(1/2),

(4.7)

and Zm,m′(g) is the bosonic partition function with defects m,m′ (see (C.4)).
The partition sums A,B,C,D can, in turn, be expressed in terms of the Jacobi ones (C.9),

using (C.5) again:

A = 1
4

(
Z2

2 + Z2
3 + Z2

4

)
, B = 1

4

(− Z2
2 + Z2

3 + Z2
4

)
,

C = 1
4

(
Z2

2 + Z2
3 − Z2

4

)
, D = 1

4

(
Z2

2 − Z2
3 + Z2

4

)
.

(4.8)

Using the transformation of Jacobi and Coulombic partition functions under modular
transformations, one can easily show that expression (4.6) is modular invariant. Let Z(r, r ′)
be the partition function of the Ising model on a torus with respective boundary conditions on
the spins σ in the two directions of the torus:

σ → (−1)rσ, σ → (−1)r
′
σ, r, r ′ ∈ {0, 1}2. (4.9)

Using relation (C.10) between Zr,r ′ and Zν , the partition sums A,B,C,D are written in terms
of the Zr,r ′ :

A = 1
4

[
Z2

0,0 + Z2
0,1 + Z2

1,0 + Z2
1,1

]
, (4.10)

B = 1
2 [Z0,0Z0,1 − Z1,0Z1,1], (4.11)

C = 1
2 [Z0,0Z1,0 − Z0,1Z1,1], (4.12)

D = 1
2 [Z0,0Z1,1 − Z0,1Z1,0]. (4.13)

Hence, from (4.6) and (4.10–4.13), the partition function Z(g) reads

Z(g) = 1

2

∑
m≡r1+r2 [2]

m′≡r ′
1+r ′

2 [2]

(−1)r1r
′
2+r ′

1r2 Zr1,r
′
1
Zr2,r

′
2
Zm,m′(g). (4.14)

The degrees of freedom contained in Z(g) are a compact boson ϕ (see (C.1)) with coupling
constant g = (π − 2γ )/(2π), and two sets of Ising spins σ1, σ2. The boundary defects for
ϕ, σ1, σ2 are respectively (m,m′), (r1, r

′
1), (r2, r

′
2), and obey parity conditions, as shown in

(4.14). Apart from these conditions, the three degrees of freedom ϕ, σ1, σ2 are decoupled.
These results are very similar to what was found in [32] for a lattice model related to N = 1
superconformal theories, where only one Ising spin was present.

Like it was done in [32] for the 19-vertex model, here we can also identify the degrees of
freedom ϕ, σ1, σ2 in the lattice model. For this purpose, we consider the vertex model defined
by the block Ř-matrix (see figure 4). It was shown in [5] that there are 38 possible vertices.
Each edge can be in one of four states: ↑,↓, |, ‖. Let Nα(r) be the number of edges adjacent
to the site r, which are in the state α. An essential property of the model, arising from the
combination of the magnetization conservation and Z/2Z symmetry, is that N| and N‖ are
both even for every vertex. Thus, for a given lattice configuration, the lines formed by the
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| and ‖ edges can be viewed as the domain walls of two distinct Ising models, both living on
the dual lattice. The remaining edges carry arrows, which define a height (SOS) model on the
dual lattice. Although these three degrees of freedom are coupled in the lattice model, our
results on the continuum partition function show that they decouple in the continuum limit,
except for their boundary conditions, which keep track of the parity of domain walls and
arrows around each direction of the torus.

5. Integrable massive deformation

In this section, we follow the approach of [13] to construct a massive deformation of the lattice
model, and study its excitation spectrum. Using the dressed scattering amplitudes, we obtain
partly the S-matrix for elementary excitations. We then complete this result with some natural
conjecture, based on symmetry and unitarity. We further use the known results from [14]
on this S-matrix to conjecture a TBA diagram, and use the TBA equations to calculate the
ground-state energy scaling function. In the UV limit, we retrieve the results from section 3.
Finally, we use these results to propose an effective QFT for the massive deformation, which
is a complex version of the C

(2)
2 Toda theory.

5.1. Massive integrable deformation on the lattice

We now consider a deformation of our model where the spectral parameters acquire an extra
staggering, this time in the imaginary direction. We choose the pattern u+i�/2, u− i�/2, u+
π/2 + i�/2, u + π/2 − i�/2. This kind of construction has been widely used to induce an
integrable massive deformation from integrable lattice models [13, 34]. We obtain a modified
set of Bethe equations:{

2π(ρ + ρh)
(0) = 2k′

� + K(0) � ρ(0) + K(−1) � ρ(1)

2π(ρ + ρh)
(1) = 2k′

� + K(1) � ρ(0) + K(0) � ρ(1),
(5.1)

where k�(λ) = k(λ + �) + k(λ − �). To explore the corresponding physics, we write what
is often called the physical equations, that is, the equations describing scattering of dressed
excitations. Since the ground state is obtained by filling up the ρ(0) and ρ(1) lines, this is easily
done by re-expressing the equations so that the densities of holes appear on the right-hand side
(see section 3.4). We find⎧⎨⎩2π(ρ + ρh)

(0) = s + �(0,0) � ρ
(0)
h + �(0,1) � ρ

(1)
h

2π(ρ + ρh)
(1) = s + �(1,0) � ρ

(0)
h + �(1,1) � ρ

(1)
h ,

(5.2)

where �(a,b) = −2πJ (a−b), and

s(λ) = π

2γ

[
1

cosh π
2γ

(λ − �)
+

1

cosh π
2γ

(λ + �)

]
. (5.3)

This function has tails at |λ| � � where s(λ) decays exponentially as in the massless case.
These describe a ‘ghost’ of the initial massless theory, whose physics does not depend on �,
and which we will not discuss in the following. It decouples entirely from the region where
|λ| � �, which is of interest to us. In this region, we have

s(λ) ≈ 2π

γ
e−π�/(2γ ) cosh

πλ

2γ
, (5.4)
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so the corresponding momentum and energy are

2kd(λ) = −
∫ λ

0
s(μ)dμ ≈ −4e−π�/(2γ ) sinh

πλ

2γ
, (5.5)

εd(λ) = sin 2γ s(λ) ≈ 4v e−π�/(2γ ) cosh
πλ

2γ
. (5.6)

We thus obtain a massive relativistic spectrum, as happens systematically in this kind of
construction. The mass is given by

μ = 4 exp

(
−π�

2γ

)
. (5.7)

The question is then, what kind of scattering theory do we obtain, and what quantum field
theory does it correspond to?

5.2. Scattering theory

To answer the above question, we start by reinterpreting the kernels �(a,b) as derivatives of
scattering phases between basic particles. We will now denote the holes in the 0, 1 sea by the
labels 0− and 1−. If we rescale the parameters λ, ω to

θ = π

2γ
× λ, k = 2γ

π
× ω, (5.8)

and set t = π/γ , we obtain, up to a constant phase which will be obtained below:

S
(0,0)
−− (θ) = S

(1,1)
−− (θ) ∝ exp

i

2

∫
dk

k

sin kθ sinh kπ(t−3)

2

sinh kπ(t−2)

2 cosh kπ
2

,

S
(0,1)
−− (θ) = S

(1,0)
−− (θ) ∝ i exp − i

2

∫
dk

k

sin kθ sinh kπ
2

sinh kπ(t−2)

2 cosh kπ
2

.

(5.9)

These two S-matrix elements can be interpreted in terms of the scattering matrix Sij (βSG; θ)

of the sine-Gordon (SG) model [35], with action

ASG[ϕ] =
∫ [

1

2
∂νϕ∂νϕ +

μ2
0

β2
SG

cos(βSGϕ)

]
. (5.10)

If we set

β2
SG

8π
= t − 2

t − 1
, (5.11)

then S
(0,0)
−− is the kink–kink (or antikink–antikink) scattering element for the SG model [35]:

S
(0,0)
−− (θ) = S

(1,1)
−− (θ) = S−−(βSG; θ). (5.12)

It is natural to identify the holes as two types of antikinks (0, 1). We expect—but this
remains for now a conjecture—the scattering theory to contain also a corresponding doublet
of kinks, with a full scattering within the (0, 0) and (1, 1) sectors described by two copies of
the sine-Gordon S-matrix.

We now observe that the kernels S
(0,1)
−− , S

(1,0)
−− are related to the SG scattering matrix

S̃ with an imaginary shift in the rapidity θ [14]. The scattering theory defined by
S(0,0) = S(1,1) = S, S(0,1) = S(1,0) = S̃ was introduced in [14], where it was proposed
as the scattering theory for left/right (L/R) massless particles describing the flow between
minimal models of CFT under a perturbation by the �13 primary operator. In [14], using the
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unitarity and crossing conditions, the normalizing factors for the S-matrix were computed.
The resulting scattering theory is as follows:

four basic particles : 0+, 0−, 1+, 1 −
S(0,0)(θ) = S(1,1)(θ) = S(βSG; θ)

S(0,1)(θ) = Z̃(θ)

Z
(
θ + iπ t−2

2

) S
(

βSG; θ + iπ
t − 2

2

)

S(1,0)(θ) = −Z̃(θ)

Z
(
θ − iπ t−2

2

) S
(

βSG; θ − iπ
t − 2

2

)
, (5.13)

where the normalization factors read

Z(θ) = 1

sinh iπ−θ
t−2

exp
i

2

∫
dk

k

sin kθ sinh kπ
2 (t − 3)

sinh kπ
2 (t − 2) cosh kπ

2

,

Z̃(θ) = 1

cosh iπ−θ
t−2

exp − i

2

∫
dk

k

sin kθ sinh kπ
2

sinh kπ
2 (t − 2) cosh kπ

2

.

(5.14)

From (5.11), we see that the SG S-matrices are in the attractive regime for t ∈ [2, 3] and
repulsive regime otherwise. We stress that 0, 1 are not antiparticles of each other.

5.3. Ground-state energy

The scaling function for the ground-state energy is the relevant object to describe the RG flow
of a scattering theory. We consider the system on a finite circle of circumference R. Then the
ground-state energy E(μ,R) has the scaling form:

E(μ,R) = 2π

R
F(μR), (5.15)

where μ is the mass of the elementary particles, given in (5.7).
In the present case, the ground-state energy can be obtained simply, using the following

identity on the dressed kernels:

�̂(0,0)(ω) + �̂(0,1)(ω) = 2π sinh(π − 4γ )ω/2

2 cosh γω sinh(π − 2γ )ω/2
. (5.16)

The right-hand side of (5.16) is exactly, in terms of the same rapidity θ , the sine-Gordon kernel
but for yet another value of the coupling, given by

β̃2
SG

8π
= t − 2

t
. (5.17)

In other words,

S00
−−(θ) S01

−−(θ) = S−−(β̃SG; θ). (5.18)

Assuming that the symmetry is not broken between the two types of roots in the ground state,
it follows immediately that the ground-state energy (calculated, e.g., by the method of [34])
is twice the ground-state energy of the sine-Gordon model with the same mass for the kinks,
and at this renormalized value of the coupling:

E(μ,R) = 2E(β̃SG;μ,R). (5.19)
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3 t− 31 2

Figure 10. The TBA diagram for the RSOS restrictions of our theory. The leftmost and rightmost
nodes are both massive.

This result is in fact quite expected if we recall that symmetric solutions to the Bethe equations
satisfy precisely the same system as in the XXZ chain whose staggering produces the sine-
Gordon theory in the continuum limit5. Of course, this result could only be completely
established by a study of the complex root solutions of the Bethe equations, which we are not
doing at this stage.

It would be more satisfactory to establish result (5.19) directly from the scattering theory.
This is difficult, because it requires understanding of the complex solutions of the Bethe
equations relevant to the thermodynamics, and these solutions seem to exhibit some unheard
of features in general. We can nevertheless make progress on the RSOS version of the
model (for t integer). The ground-state energy E(μ,R) is generally obtained by the TBA for
relativistic scattering theories, introduced in [36]. The idea of the method is to consider a
Euclidean theory on a semi-infinite cylinder of dimensions R × L, and to write the partition
function in two ways:

Z(R,L) = exp[−E(μ,R)L] = Tr(e−RHL), (5.20)

where HL is the Hamiltonian on an infinite domain when L → ∞. The problem of computing
E(μ,R) is thus equivalent to the computation of the free energy on an infinite domain, at
finite temperature 1/R. So one has to find the density of elementary particles which satisfies
BAE (5.2), and maximizes the free energy at temperature 1/R. This results in the nonlinear
integral equations and the ground-state energy, given in terms of the pseudo-energies εa [36]:

εa(θ) = μaR cosh θ −
∑

b

(φab � Lb)(θ),

La = log(1 + e−εa ), φab = Nab

2π cosh θ
,

E(μ,R) = −
∑

a

μa

2π

∫
La(θ) cosh θ dθ,

(5.21)

where μa is the mass of particles of type a, and Nab is the adjacency matrix of a diagram
describing the scattering between particles. In a diagonal (non-reflecting) scattering theory,
the μa and φab would be given directly from the dispersion relations and the S-matrix for
elementary excitations. However, the present model does allow reflection of the particles. The
main difficulty here is then to find the correct TBA diagram and masses for the S-matrix we
want to study. Following the ideas of [14–16] (see the introduction), we conjecture that the
TBA diagram for the scattering theory (5.13) with mass μ (5.7) is the diagram of figure 10.

Now, assuming the above conjecture is correct, we check that the TBA equations (5.21)
for the diagram of figure 10 lead to the central charge (3.33) in the UV limit R → 0. As in
[15], the ground-state energy in the UV limit is obtained in terms of the limiting values of εa

5 The careful reader might worry about the role of � in both points of view. The staggering in the equivalent XXZ
system involves 2�, but the anisotropy is also doubled, so the physical mass remains the same.
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in the UV and IR limit:

E(μ,R)  − 1

πR

[
t−3∑
a=1

L
(

xa

1 + xa

)
−

t−3∑
a=1

L
(

ya

1 + ya

)]
,

xa = lim
R→0

[e−εa(0)], ya = lim
R→∞

[e−εa(0)], (5.22)

where L is the Rogers dilogarithm:

L(x) = −1

2

∫ x

0
dt

[
log t

1 − t
+

log(1 − t)

t

]
. (5.23)

The quantities xa, ya are determined by the adjacency matrix Nab and the masses μa [15]:

x2
a =

t−3∏
b=1

(1 + xb)
Nab , y2

a =
∏

b|μb=0

(1 + yb)
Nab . (5.24)

To connect this with known results [15] on the RSOS central charge, we introduce the quantities
za which satisfy

z2
a =

t−3∏
b=2

(1 + zb)
Nab , a = 2, . . . , t − 3, (5.25)

and write (5.22) as

E(μ,R)  − 1

πR

[
t−3∑
a=1

L
(

xa

1 + xa

)
−

t−3∑
a=2

L
(

za

1 + za

)]

− 1

πR

[
t−3∑
a=2

L
(

za

1 + za

)
−

t−4∑
a=2

L
(

ya

1 + ya

)]
. (5.26)

The above expression is exactly the sum of ground-state energies for the At−2 and At−3 RSOS
models, so the central charge is

c =
[

1 − 6

t (t − 1)

]
+

[
1 − 6

(t − 1)(t − 2)

]
= 2 − 12

t (t − 2)
, (5.27)

which is the central charge (3.33) of the critical theory.
Finally, we show that, throughout the scaling regime, the ground-state energy E(μ,R) is

twice that of the corresponding twisted sine-Gordon model. Different cases arise, and we will
discuss only one: the case when t − 3 = 2n + 1, n ∈ N. We can then relabel the nodes on
the diagram of figure 10, so that the n leftmost ones are called 1, . . . , n, the n rightmost ones
n̄, . . . , 1̄ and the middle one is 0. The TBA equations (5.21) then read

εa = δa1μR cosh θ −
∑

b

Nab φ � Lb, a = 1, . . . , n − 1,

εā = δā1̄μR cosh θ −
∑

b

Nab φ � Lb̄, a = 1, . . . , n − 1,

εn = −φ � (Ln−1 + L0) ,

εn̄ = −φ �
(
Ln−1 + L0

)
,

ε0 = −φ � (Ln + Ln̄) , (5.28)
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0̄1 2 3 n

0

Figure 11. The TBA for the sine-Gordon model at coupling β̃2
SG/(8π) = (n + 1)/(n + 2).

where we have set φ(θ) = 1/(2π cosh θ). We consider symmetric solutions under the
exchange of a and ā:

εa = δa1μR cosh θ −
∑

b

Nabφ � Lb, a = 1, . . . , n − 1,

εn = −φ � Ln−1 − φ � log(1 + i e−ε0/2) − φ � log(1 − i e−ε0/2),

ε0

2
= −φ � Ln,

εā = εa. (5.29)

The ground-state energy is meanwhile

E(μ,R) = −2
n∑

a=1

μa

2π

∫
La(θ) cosh θ dθ. (5.30)

We thus see that our system has twice the ground-state energy of a TBA whose diagram is as
in figure 11, and which involves a fugacity for the two end nodes of the fork equal to ±i. This
is exactly the TBA for the twisted sine-Gordon model, following the lines of [37]. For this
value of the twist in particular, the results in [37] give the central charge (using equation (21)
of [37], with t + 1 = n + 2 the total number of nodes; λ1− = −λt−1 = i in equation (20) of
[37]):

c̃ = 1 − 3/2

(n + 1)(n + 2)
. (5.31)

Comparing (5.27) and (5.31) for t − 3 = 2n + 1, we see that c = 2̃c.

5.4. The field theory

We now try to identify the field theory described by our TBA. This of course involves a bit of
guesswork.

First, recall we have found that the physical mass of the theory scales as μ ∝ e−t�/2 where
γ = π/t . On the other hand, we can in general expect that we are facing the perturbation of
a model of central charge c = 2 by some operator �h of conformal dimension h, with action

A = ACFT + ω

∫
d2x �h, (5.32)

where ACFT is the action for the critical UV limit. The dimension of the coupling constant ω

is [ω] = R2h−2, and thus the mass in the TBA scales as μ ∝ ω1/(2−2h). A detailed look at the
microscopic Hamiltonian shows that the bare coupling is proportional to e−�. If follows that
2 − 2h = 2/t , and thus

h = t − 1

t
. (5.33)

In general, the TBA approach will give for the ground-state energy E(μ,R) a series
in μα , where the exponent α is given by α = 2(1 − h) if correlations of �h are non-zero
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(e.g. perturbation by �13 in minimal models), α = 4(1 − h) if only even correlators are
non-zero (e.g. the sine-Gordon model). Other possibilities exist, e.g. α = 8(1 − h) if only
correlators involving a number of operators multiple of four are non-zero.

Since the ground-state energy of our model is twice that of the SG model at β̃2
SG/(8π) =

(t − 2)/t , it follows that α = 4(1 − hSG), where hSG = (t − 2)/t . Meanwhile, we have
identified earlier the dimension of the perturbation as h = (t − 1)/t , and thus α = 8(1 − h).
We are forced to conclude therefore that in our problem indeed only correlators involving a
number of operators multiple of four are non-zero.

Meanwhile, the structure of the scattering matrix suggests the same quantum group
symmetry as the one in the βSG theory, with, for generic values of t, only one conserved
charge, since the S01 elements allow reflection of charges between 0 and 1 sectors (this does
not occur at the special points where t/(t −2) is an integer). Finally, the structure of finite-size
effects showed that the CFT was made of a Dirac fermion and a boson of t-dependent radius.
This all leads us to propose that the action of the theory is

A[ϕ,ψ1, ψ2] =
∫ [

1

2
∂νϕ∂νϕ + i(ψ̄1∂/ψ1 + ψ̄2∂/ψ2)

]
d2x

+ μ0

∫ [
ψ1ψ̄1eiβϕ + ψ2ψ̄2e−iβϕ

]
d2x, (5.34)

where ϕ is the boson and ψ1, ψ2 are the two Majorana components of the Dirac theory. One can
check that this theory is indeed integrable using the non-local conserved charges ψ1e−(4iπ/β)ϕ

and ψ2e(4iπ/β)ϕ . The algebra satisfied by these charges leads to SU(2)q with quantum-group
deformation parameter [38]:

q = − exp(−iπ/δ), δ = 2β2

4π − β2
. (5.35)

Meanwhile, the basic SG S-matrix with the foregoing value of βSG also has the quantum group
symmetry [39], with deformation parameter that corresponds to

δ = β2
SG

8π − β2
SG

= t − 2. (5.36)

By requiring that the symmetry of the S-matrix is the symmetry of the action, we identify the
above two expressions for δ, and we get

β2

8π
= t − 2

2t
. (5.37)

The dimension of the perturbation is indeed

h = 1

2
+

t − 2

2t
= t − 1

t
, (5.38)

and clearly only correlators involving a number of operators multiple of four are non-zero.
We also obtain a non-unitary theory, which is expected from the presence of complex terms
in the Hamiltonian.

An important check of our proposal would be to see if the ground-state energy of theory
(5.34) is twice the ground-state energy of the related sine-Gordon model. One might first
tackle this question in perturbation theory. We will leave this for future work, and content
ourselves by examining the question in the limit β → 0. Then β̃SG → 0 and we expect, on
the one hand, the ground-state energy to be twice the one of a free boson. On the other hand,
our action reduces naively to two identical massive Majorana fermions. In the limit β → 0,

however, counter-terms are needed and a ϕ2 term also appears (exactly as in the case of N = 1
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theories [40]), leading to an additional free massive boson. Denote by Eb the ground-state
energy of such a boson, and Ef the ground-state energy of a free Majorana fermion:

Eb(μ,R) = − μ

2π

∫ ∞

−∞
log(1 − e−μR cosh θ ) cosh θ dθ,

Ef (μ,R) = μ

2π

∫ ∞

−∞
log(1 + e−μR cosh θ ) cosh θ dθ. (5.39)

We have the identity

2Eb(μ,R) = Eb(2μ,R) + 2Ef (μ,R), (5.40)

so we see indeed that the ground-state energy of our field theory will be twice the ground-state
energy of the SG model in the limit of vanishing coupling provided that the mass terms are
in the proper ratios. More precisely, the left-hand side of (5.40) corresponds to twice the
ground-state energy for the theory:

A[ϕ] =
∫ (

1

2
∂νϕ∂νϕ + μ2ϕ2

)
, (5.41)

so near βSG = 0 we will need an action of the form

A[ϕ,ψ1, ψ2] =
∫ [

1

2
∂νϕ∂νϕ + i(ψ̄1∂/ψ1 + ψ̄2∂/ψ2)

]
d2x

+ μ0

∫
[ψ1ψ̄1eiβϕ + ψ2ψ̄2e−iβϕ]d2x

+
μ2

0

β2

∫
cos(2βϕ)d2x. (5.42)

We now observe that our theory is identical to the C
(2)
2 Toda theory (more precisely, we need

in fact to set n = 1 in the more general C
(2)
n+1 theory whose form is valid for n > 1 only) whose

Lagrangian would read [41, 42]

L[ϕ,ψ1, ψ2] = 1

2
∂νϕ∂νϕ + i(ψ̄1∂/ψ1 + ψ̄2∂/ψ2)

− μ0
(
ψ̄1ψ1egϕ/

√
2 + ψ̄2ψ2e−gϕ/

√
2
)

− 2μ2
0

g2
cosh(

√
2gϕ). (5.43)

Clearly we have to set g = i
√

2β. We then see that in the limit β → 0 the boson has the mass
parameter twice the one of the Majorana fermions, in agreement with (5.40). Our results can
be summarized as follows.

• The continuum limit of our lattice model is the complex C
(2)
2 theory (5.42).

• The S-matrix of this theory is given by (5.13), with β2
SG/(8π) = 2β2/(β2 + 4π).

• The ground-state energy is twice the ground-state energy of the sine-Gordon theory at
coupling β̃2

SG = 2β2.

6. Conclusion

From the point of view of integrable statistical models, one can think of several ways to
generalize the construction of the Z2 model. First, one can build a model with a staggering of
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period p > 2, which has a Z/pZ symmetry [43]. We guess that the corresponding continuum
limit will be related to a product of p copies of SU(2)1, made anisotropic by a J 3J 3 term
as in the case p = 2. What the integrable massive deformation might be is however more
mysterious. Also, the effective field theory for the analogue of the non-compact regime [5]
is less clear. Another interesting direction is to apply the same kind of construction to other
models than the six-vertex model. Of particular interest here would be the ‘dilute version’,
obtained by staggering the Izergin–Korepin 19-vertex model.

In the CFT perspective, the expression for the toroidal partition function in terms of
Coulombic partition functions generally leads to a classification of new minimal series of
CFTs. It is possible, in principle, to follow this programme in the case of the Z2 model
partition functions.

There are also some important questions about the physical interpretation of the Z2

Hamiltonian as a zig–zag spin chain. We have seen that non-Hermitian terms in the
Hamiltonian play a role, but it could be that the model is in the same universality class
as a well-defined, Hermitian spin-chain model. Additionally, at the Majumdar–Ghosh point,
the gapped excitations above the ground state (spinons) could be studied more systematically,
through a variational approach similar to [28].

In the context of the quadratic TL Hamiltonian (2.14), the Z2 model is an integrable point,
governing the behaviour of a whole critical phase, as was shown numerically in [25]. Various
features of this phase diagram still lead to open questions, such as the complete RG flow of
(2.14) and the associated operators at the fixed points, but also the differences between the
RSOS and loop formulations.
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Appendix A. Physical quantities for holes

This appendix is about the analysis of the Bethe equations in the continuum limit. Here we
prove equation (3.21), which gives the variation of a physical quantity A in the presence
of a hole λh in the distribution {λ(0)

j }. It is useful first to give the Fourier transform of the
momentum and the kernels:

2k̂′(ω) = 2π sinh(π/2 − γ )ω

sinh(πω/2)
, (A.1)

K̂(0)(ω) = −2π sinh(π − 2γ )ω

sinh πω
, K̂(±1)(ω) = 2π sinh 2γω

sinh πω
, (A.2)

1 + Ĵ (+)(ω) = sinh(πω/2)

2 sinh(π/2 − γ )ω cosh γω
,

1 + Ĵ (−)(ω) = cosh(πω/2)

2 cosh(π/2 − γ )ω cosh γω
.

(A.3)
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The hole λh affects the Lieb equations (3.17):⎧⎨⎩2k′ = (2π − K(0)) � ρ(0) − K(1) � ρ(1) + K(0)(λ−λh)

N
,

2k′ = −K(1) � ρ(0) + (2π − K(0)) � ρ(1) + K(1)(λ−λh)

N
,

(A.4)

Combining with the ground-state equation, we get

ρ(0)(λ) + ρ(1)(λ) − 2ρ∞(λ) = − 1

N
J (+)(λ − λh). (A.5)

The variation of A is given by

A − A0 =
∫ ∞

−∞
dλ [ρ(0)(λ) − ρ∞(λ)] α(λ)

+
∫ ∞

−∞
dλ [ρ(1)(λ) − ρ∞(λ)] α(λ) − 1

N
α(λh)

=
∫ ∞

−∞
dλ(ρ(0) + ρ(1) − 2ρ∞)(λ) α(λ) − 1

N
α(λh)

= − 1

N

∫ ∞

−∞
dλ J (+)(λ − λh) α(λ) − 1

N
α(λh). (A.6)

Since J (+) is even, we get result (3.21).

Appendix B. Finite-size corrections

In this appendix, we introduce a variant of the Wiener–Hopf method [44], to calculate finite-
size corrections to the energies from the analysis of the Bethe equations.

We consider combined magnetic excitations (m(0), m(1)). Since the Bethe integer
distributions {I (0,1)

j } are symmetric around zero, the bounds of the integrals in equation (3.17)
are such that C(0) = B(0), C(1) = B(1). We can write⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2k′(λ) = 2πρ(a)(λ) −
∑
b=0,1

∫ +B(b)

−B(b)

dμ ρ(b)(μ)K(a−b)(λ − μ)

2k′(λ) = 2πρ∞(λ) −
∫ ∞

−∞
dμ ρ∞(μ)(K(0) + K(1))(λ − μ).

(B.1)

Applying the convolution by (2π)−1(δ +J (±)) to symmetric and antisymmetric combinations,
we get ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(ρ(0) + ρ(1) − 2ρ∞)(λ) = −
∑
a=0,1

∫
|μ|>B(a)

dμ ρ(a)(μ)J (+)(λ − μ)

(ρ(0) − ρ(1))(λ) = −
∑
a=0,1

(−1)a
∫

|μ|>B(a)

dμ ρ(a)(μ)J (−)(λ − μ).

Combining again the equations, we get

(ρ(a) − ρ∞)(λ) = −
∑
b=0,1

∫
|μ|>B(b)

dμ ρ(b)(μ)J (a−b)(λ − μ), (B.2)

where J (0), J (±1) are defined in (3.27). Let us define the symmetric/antisymmetric physical
quantities

A(±) ≡
∫ +B(0)

−B(0)

dλ ρ(0)(λ)α(λ) ±
∫ +B(1)

−B(1)

dλ ρ(1)(λ)α(λ). (B.3)
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The variation of A(±) with respect to the ground-state value (A(±))∞ can be expressed as

A(+) − A
(+)
∞ = −

∑
a=0,1

∫
|μ|>B(a)

ρ(a) × [(δ + J (+)) � α] dμ

A(−) − A
(−)
∞ = −

∑
a=0,1

(−1)a
∫

|μ|>B(a)

ρ(a) × [(δ + J (−)) � α] dμ,

where we use the fact that J (+) and J (−) are even. Setting α(λ) = −1 or α(λ) = ε(λ), we get
the charges and the energy:

m

N
= [1 + Ĵ (+)(0)]

∑
a=0,1

∫
|μ|>B(a)

dμ ρ(a)(μ), (B.4)

m̃

N
= [1 + Ĵ (−)(0)]

∑
a=0,1

(−1)a
∫

|μ|>B(a)

dμ ρ(a)(μ), (B.5)

E − Egs

N
=

∑
a=0,1

∫
|μ|>B(a)

dμ ρ(a)(μ)εd(μ). (B.6)

To solve the Lieb equations (B.2), we define the shifted densities: g(a)(λ) = ρ(a)(B(a) +λ)

for a = 0, 1. Neglecting the terms from μ < 0 (see [44]), we get the coupled Wiener–Hopf
equations

g(a)(λ) +
∫ ∞

0
dμ g(b)(μ)J (a−b)(λ − μ + B(a,b)) = ρ∞(B(a) + λ),

where B(a,b) = B(a) − B(b). After Fourier transform⎧⎨⎩(1 + Ĵ (0)) g
(0)
+ + e−iωbĴ (−1) g

(1)
+ + g

(0)
− = e−iωB(0)

ρ̂∞

eiωbĴ (1) g
(0)
+ + (1 + Ĵ (0)) g

(1)
+ + g

(1)
− = e−iωB(1)

ρ̂∞,
(B.7)

where b = B(0) − B(1). We use the factorizations

1 + Ĵ (+)(ω) = 1

G+(ω)G−(ω)
, 1 + Ĵ (−)(ω) = 1

H+(ω)H−(ω)
, (B.8)

where

G+(ω) =
√

2π2

π − 2γ

�(iω/2)

�[(1/2 − γ /π)iω] �[1/2 + (γ /π)iω]
, (B.9)

G−(ω) = G+(−ω), (B.10)

H+(ω) =
√

2π �(1/2 + iω/2)

�[1/2 + (1/2 − γ /π)iω] �[1/2 + (γ /π)iω]
, (B.11)

H−(ω) = H+(−ω), (B.12)

and we factorize the 2 × 2 matrix:

1 + Ĵ ≡
(

1 + Ĵ (0) e−iωbĴ (−1)

eiωbĴ (1) 1 + Ĵ (0)

)
= G−1

− G−1
+ . (B.13)
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The matrices G± read

G± = 1

2

(
G± + H± e−iωb(G± − H±)

eiωb(G± − H±) G± + H±

)
, (B.14)

G−1
± = 1

2

(
G−1

± + H−1
± e−iωb(G−1

± − H−1
± )

eiωb(G−1
± − H−1

± ) G−1
± + H−1

±

)
. (B.15)

We can write the system (B.7) as

(1 + Ĵ)

(
g

(0)
+

g
(1)
+

)
+

(
g

(0)
−

g
(1)
−

)
= e−iωB(0)

ρ̂∞

(
1

eiωb

)
. (B.16)

We multiply by G−:

G−1
+

(
g

(0)
+

g
(1)
+

)
+ G−

(
g

(0)
−

g
(1)
−

)
= e−iωB(0)

ρ̂∞ G−

(
1

eiωb

)
. (B.17)

The solution is given in terms of the pole ω0 = −iπ/(2γ ) for ρ̂∞ and the residue
r0 = Res(̂ρ∞, ω0):(

g
(0)
+

g
(1)
+

)
= G+

[
e−iωB(0)

ρ̂∞ G−

(
1

eiωb

)]
+

= − r0ζ
(0)

ω0 − ω
G+(ω)G−(ω0)

(
1

eiω0b

)

= − r0ζ
(0)G−(ω0)

ω0 − ω
G+(ω)

(
1

eiω0b

)
, (B.18)

where ζ (a) = e−iω0B
(a)

. So the magnetic charges are given by

m

N
= −2r0G−(ω0)

ω0G−(0)
(ζ (0) + ζ (1)), (B.19)

m̃

N
= −2r0G−(ω0)

ω0H−(0)
(ζ (0) − ζ (1)). (B.20)

The total energy is

E − Egs

N
= 2i Res( ε̂d , ω0) [ζ (0)g(0)

+ (−ω0) + ζ (1)g(1)
+ (−ω0)]

= 2iπ sin 2γ
r2

0 G−(ω0)G+(−ω0)

ω0
[(ζ (0))2 + (ζ (1))2]

= 2πv

8

[(
G−(0)m

N

)2

+

(
H−(0)m̃

N

)2
]

= 2πv

8

{
1

1 + Ĵ (+)(0)

(m

N

)2 1

1 + Ĵ (−)(0)

−1 ( m̃

N

)2
}

. (B.21)

Using expressions (A.3) for Ĵ (±), we get the critical exponents given in (3.31). A similar
calculation with C(a) �= B(a) would give the electric critical exponents.
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Appendix C. Bosonic partition functions and Jacobi’s theta functions

C.1. Free boson on a torus

Let us recall some known results on the free boson theory on a torus [45]. We denote by τ the
modular ratio of the torus, and we write q = e2iπτ . The free boson is defined by the action A
and the partition function Z0:

A[ϕ] = g

4π

∫
d2x |∇ϕ|2, (C.1)

Z0(g) =
∫

[Dϕ] exp(−A[ϕ]) =
√

g

Im τ

1

|η(τ)|2 , (C.2)

where g is the coupling constant, and η(τ) is the Dedekind function:

η(τ) = q1/24
∞∏

n=1

(1 − qn). (C.3)

When defects δϕ, δ′ϕ are introduced on the boundaries, this defines the partition function
Zm,m′ , with m,m′ integers:

Zm,m′(g) =
∫

δϕ=2πm

δ′ϕ=2πm′

[Dϕ] exp(−A[ϕ])

= Z0(g) exp

(
−πg|m′ − mτ |2

Im τ

)
. (C.4)

A Poisson summation of (C.4) yields∑
m′∈Z

eiαm′
Zm,m′(g)

= 1

|η(τ)|2
∑

k∈Z+α/(2π)

q(k/
√

g+m
√

g)2/4 q̄(k/
√

g−m
√

g)2/4. (C.5)

C.2. Jacobi theta functions

The Jacobi theta functions are defined as

θ1(τ ) = −i
∑
n∈Z

(−1)nq(n+1/2)2/2, θ2(τ ) =
∑
n∈Z

q(n+1/2)2/2,

θ3(τ ) =
∑
n∈Z

qn2/2, θ4(τ ) =
∑
n∈Z

(−1)nqn2/2.

(C.6)

They obey the algebraic relations:

θ2(τ )θ3(τ )θ4(τ ) = 2η(τ)3, (C.7)√
θ3(τ )θ4(τ ) = θ4(2τ). (C.8)

We denote the Jacobi partition functions by

Zν =
∣∣∣∣θν(τ )

η(τ )

∣∣∣∣ , ν = 2, 3, 4. (C.9)
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The Ising partition functions Zr,r ′ are related to the Jacobi ones by

Z2 = Z1,0 + Z1,1

Z3 = Z0,1 + Z1,0

Z4 = Z0,1 + Z1,1

Z0,0 = Z0,1 + Z1,0 + Z1,1.

(C.10)

Appendix D. Partition functions for the staggered models

D.1. Twisted vertex model and Potts model

Starting from the untwisted partition function Z(g), we can proceed as in [45], to construct
the twisted partition function and the Potts partition function. The partition function where
non-contractible loops have a weight n̂ = 2 cos φ is given by

Ẑ(g, φ) = 2

(
A

∑
m,m′ even

+ B
∑

m even,m′ odd

+ C
∑

m odd,m′ even

+ D
∑

m,m′ odd

)
Zm,m′(g) cos(2φ m ∧ m′), (D.1)

where m ∧ m′ denotes the greatest common factor between m and m′. In particular, for
φ = π/2 and φ = π/4, we have

Ẑ(g, π/2) = 2

(
A

∑
m,m′ even

− B
∑

m even,m′ odd

− C
∑

m odd,m′ even

− D
∑

m,m′ odd

)
Zm,m′(g), (D.2)

Ẑ(g, π/4) = A

⎡⎣ ∑
m,m′∈Z

Zm,m′

(
1

16g

)
− 2

∑
m,m′∈2Z

Zm,m′(g)

⎤⎦ . (D.3)

The Q-state Potts partition function has an extra term due to clusters with cross geometry [45]:

ZPotts(Q) = Ẑ(g, πe0) + 1
2 (Q − 1)Ẑ(g, π/2), (D.4)

where√
Q = 2 cos γ, 0 < γ <

π

2
, g = π − 2γ

2π
, e0 = γ

π
. (D.5)

D.2. Particular values of Q

• The case Q = 2
This provides a good check of result (4.14), since the Potts model arising from the
staggered vertex model is equivalent, on the lattice, to the usual critical Ising model.
Using (D.4),

ZPotts(Q = 2) =
[
(A − B)

∑
m even,m′ odd

+(A − C)
∑

m odd,m′ even

+ (A − D)
∑

m,m′ odd

]
Zm,m′(1/4). (D.6)
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Now the sums on m,m′ can be expressed in terms of the Zν :

∑
m even,m′ odd

Zm,m′(1/4) = 1

2
Z3Z4

∑
m odd,m′ even

Zm,m′(1/4) = 1

2
Z2Z3

∑
m,m′ odd

Zm,m′(1/4) = 1

2
Z2Z4.

(D.7)

We obtained the first identity by using (C.7), and the two others by expanding the square
of the left-hand sides. Combining (D.7) with (4.8) and (C.8), we get

ZPotts(Q = 2) = 1
2 (Z2 + Z3 + Z4) = ZIsing, (D.8)

so we correctly find the Ising partition function.

• The case Q = 1
This case is a priori a bit intriguing. The partition function of the Potts model is then
a trivial object (since there is only one state available for the whole lattice), while the
general formulae for the central charge give in this particular case c = −2 (Q = 1 so
γ = π/3, g = 1/6, e0 = 1/3). This discrepancy occurs for the same reason as in the
Berker–Kadanoff phase [4]: the level of the transfer matrix corresponding to a trivial
partition function (and hence, formally, c = 0) is very high in the spectrum, while the
level generically dominating the thermodynamics (but which disappears right at Q = 1
by quantum group truncation) corresponds to c = −2 (this means that the free energy is
a discontinuous function of Q or of the boundary conditions [4]).
Let us now see the mechanism in more detail. The ground-state energy of our system in
the untwisted case is twice the ground-state energy of the antiferromagnetic XXZ model
with �0 = − cos 2γ . In the case Q = 1 we have �0 = 1

2 . The antiferromagnetic XXZ
model with this value of the anisotropy is related to the Potts model at Q = 1 on the
‘non-physical self-dual line’ [33]. Recall that, meanwhile, the Potts model on the usual
self-dual line is related to the antiferromagnetic XXZ chain at 2� = −√

Q, so � = − 1
2

in the case Q = 1.
Now we know that the energies of the antiferromagnetic XXZ at � = − 1

2 are minus the
energies of the antiferromagnetic XXZ at � = 1

2 (this is the general mapping between H�

and −H−�). The ground-state energy of the antiferromagnetic XXZ at � = 1
2 is the same,

per unit length in the thermodynamic limit, as the one of the twisted antiferromagnetic
XXZ, i.e. the ground-state energy of the percolation problem, i.e. E0 = 0 in the proper
normalization. We thus conclude that the eigenvalue ‘corresponding to Z = 1’ in our
spectrum is the most excited among the subset of symmetric states.
It is useful to see this mechanism at the level of partition functions as well. Start from
(D.1) and set Q = 1, φ = π/3. Then there is no contribution from the cross-geometry
clusters. Since cos 2π/3 = cos 4π/3 = − 1

2 , we have

∑
m,m′

Zm,m′(g) cos(2φ m ∧ m′) =
⎛⎝3

2

∑
m,m′∈3Z

−1

2

∑
m,m′

⎞⎠Zm,m′ .

35



J. Phys. A: Math. Theor. 43 (2010) 225201 Y Ikhlef et al

Moreover, m = 3p is odd (resp. even) iff p is odd (resp. even). Finally,
Z3p,3p′(g) = Zp,p′(9g)/3. So we can rewrite

ZPotts(Q = 1) =
(

A
∑

m,m′ even

+B
∑

m even,m′ odd

+ C
∑

m odd,m′ even

+D
∑

m,m′ odd

)
[Zm,m′(9g) − Zm,m′(g)]. (D.9)

We can recombine terms using expressions for the A,B,C,D in terms of the Zν :

ZPotts(Q = 1) = 1

2
(A − B − C − D)

+ (B − D)
∑

m even,m′
[Zm,m′(3/2) − Zm,m′(1/6)]

+ (C − D)
∑

m,m′ even

[Zm,m′(3/2) − Zm,m′(1/6)],

where we have specialized to g = 1/6 and used Euler’s identity:∑
m,m′even

[Zm,m′(3/2) − Zm,m′(1/6)] = 1

2
[Zc(6) − Zc((2/3)]

= 1. (D.10)

Both of the terms∑
m even,m′

[Zm,m′(3/2) − Zm,m′(1/6)] (D.11)

and ∑
m,m′ even

[Zm,m′(3/2) − Zm,m′(1/6)] (D.12)

can be shown to vanish exactly. We conclude that

ZPotts(Q = 1) = 0. (D.13)

This means there are exact cancellations among states in the low-energy spectrum: the
(unique) state that would correspond to the trivial partition function is very highly excited
and does not contribute to the conformal partition function (at c = −2 in this case).
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